Action potential timing precision in dorsal cochlear nucleus pyramidal cells.

نویسندگان

  • Sarah E Street
  • Paul B Manis
چکیده

Many studies of the dorsal cochlear nucleus (DCN) have focused on the representation of acoustic stimuli in terms of average firing rate. However, recent studies have emphasized the role of spike timing in information encoding. We sought to ascertain whether DCN pyramidal cells might employ similar strategies and to what extent intrinsic excitability regulates spike timing. Gaussian distributed low-pass noise current was injected into pyramidal cells in a brain slice preparation. The shuffled autocorrelation-based analysis was used to compute a correlation index of spike times across trials. The noise causes the cells to fire with temporal precision (SD congruent with 1-2 ms) and high reproducibility. Increasing the coefficient of variation of the noise improved the reproducibility of the spike trains, whereas increasing the firing rate of the neuron decreased the neurons' ability to respond with predictable patterns of spikes. Simulated inhibitory postsynaptic potentials superimposed on the noise stimulus enhanced spike timing for >300 ms, although the enhancement was greatest during the first 100 ms. We also found that populations of pyramidal neurons respond to the same noise stimuli with correlated spike trains, suggesting that ensembles of neurons in the DCN receiving shared input can fire with similar timing. These results support the hypothesis that spike timing can be an important aspect of information coding in the DCN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Street and Manis Action potential timing precision in dorsal cochlear nucleus pyramidal cells

Many studies of the dorsal cochlear nucleus (DCN) have focused on the representation of acoustic stimuli in terms of average firing rate. However, recent studies have emphasized the role of spike timing in information encoding. We sought to ascertain whether DCN pyramidal cells might employ similar strategies and to what extent intrinsic excitability regulates spike timing. Gaussian distributed...

متن کامل

A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...

متن کامل

Kv3 K+ currents contribute to spike-timing in dorsal cochlear nucleus principal cells

Exposure to loud sound increases burst-firing of dorsal cochlear nucleus (DCN) fusiform cells in the auditory brainstem, which has been suggested to be an electrophysiological correlate of tinnitus. The altered activity of DCN fusiform cells may be due to down-regulation of high voltage-activated (Kv3-like) K+ currents. Whole cell current-clamp recordings were obtained from DCN fusiform cells i...

متن کامل

Dendritic Ca transients evoked by action potentials in rat dorsal cochlear nucleus pyramidal and cartwheel neurons Running title: Dendritic Ca transients in DCN neurons

Simultaneous fluorescence imaging and electrophysiologic recordings were used to investigate the Ca influx initiated by action potentials (APs) into dorsal cochlear nucleus (DCN) pyramidal cell (PC) and cartwheel cell (CWC) dendrites. Local application of Cd blocked Ca transients in PC and CWC dendrites, demonstrating that the Ca influx was initiated by dendritic Ca channels. In PCs, TTX elimin...

متن کامل

Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro.

Intracellular recordings were made from neurons of the guinea pig dorsal cochlear nucleus in an in vitro brain slice preparation. The membrane properties of the cells were studied, and the membrane potentials were manipulated by current injection to determine how intrinsic conductances might alter the cell discharge patterns. Eleven cells were marked with Lucifer yellow. Ten of these cells were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2007